Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 554, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724559

RESUMO

Promiscuous labeling enzymes, such as APEX2 or TurboID, are commonly used in in situ biotinylation studies of subcellular proteomes or protein-protein interactions. Although the conventional approach of enriching biotinylated proteins is widely implemented, in-depth identification of specific biotinylation sites remains challenging, and current approaches are technically demanding with low yields. A novel method to systematically identify specific biotinylation sites for LC-MS analysis followed by proximity labeling showed excellent performance compared with that of related approaches in terms of identification depth with high enrichment power. The systematic identification of biotinylation sites enabled a simpler and more efficient experimental design to identify subcellular localized proteins within membranous organelles. Applying this method to the processing body (PB), a non-membranous organelle, successfully allowed unbiased identification of PB core proteins, including novel candidates. We anticipate that our newly developed method will replace the conventional method for identifying biotinylated proteins labeled by promiscuous labeling enzymes.


Assuntos
Biotinilação , Humanos , Biotina/química , Biotina/metabolismo , Proteômica/métodos , Animais , Coloração e Rotulagem/métodos , Cromatografia Líquida/métodos , Proteoma/metabolismo , Espectrometria de Massas/métodos
2.
Nat Commun ; 15(1): 1851, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424052

RESUMO

Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
3.
Cancer Discov ; 14(5): 766-785, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319303

RESUMO

Adding anti-programmed cell death protein 1 (anti-PD-1) to 5-fluorouracil (5-FU)/platinum improves survival in some advanced gastroesophageal adenocarcinomas (GEA). To understand the effects of chemotherapy and immunotherapy, we conducted a phase II first-line trial (n = 47) sequentially adding pembrolizumab to 5-FU/platinum in advanced GEA. Using serial biopsy of the primary tumor at baseline, after one cycle of 5-FU/platinum, and after the addition of pembrolizumab, we transcriptionally profiled 358,067 single cells to identify evolving multicellular tumor microenvironment (TME) networks. Chemotherapy induced early on-treatment multicellular hubs with tumor-reactive T-cell and M1-like macrophage interactions in slow progressors. Faster progression featured increased MUC5A and MSLN containing treatment resistance programs in tumor cells and M2-like macrophages with immunosuppressive stromal interactions. After pembrolizumab, we observed increased CD8 T-cell infiltration and development of an immunity hub involving tumor-reactive CXCL13 T-cell program and epithelial interferon-stimulated gene programs. Strategies to drive increases in antitumor immune hub formation could expand the portion of patients benefiting from anti-PD-1 approaches. SIGNIFICANCE: The benefit of 5-FU/platinum with anti-PD-1 in first-line advanced gastric cancer is limited to patient subgroups. Using a trial with sequential anti-PD-1, we show coordinated induction of multicellular TME hubs informs the ability of anti-PD-1 to potentiate T cell-driven responses. Differential TME hub development highlights features that underlie clinical outcomes. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Masculino , Imunoterapia/métodos , Fluoruracila/uso terapêutico , Fluoruracila/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Pessoa de Meia-Idade , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia
4.
J Control Release ; 366: 142-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145660

RESUMO

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Verde de Indocianina/uso terapêutico , Verde de Indocianina/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico
5.
Pharmaceutics ; 15(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37514021

RESUMO

The development of metal salts-based nanocomposites is highly desired for the Fenton or Fenton-like reaction-based chemodynamic therapy of cancer. Manganese sulfate (MnSO4)-dispersed nanoparticles (NPs) were fabricated with a hot-melt extrusion (HME) system for the chemodynamic therapy of colorectal cancer in this study. MnSO4 was homogeneously distributed in polyethylene glycol (PEG) 6000 (as a hydrophilic polymer) with the aid of surfactants (Span 80 and Tween 80) by HME processing. Nano-size distribution was achieved after dispersing the pulverized extrudate of MnSO4-based composite in the aqueous media. The distribution of MnSO4 in HME extrudate and the interactions between MnSO4 and pharmaceutical additives were elucidated by Fourier-transform infrared, X-ray diffractometry, X-ray photoelectron spectroscopy, and scanning electron microscopy analyses. Hydroxyl radical generation efficiency by the Fenton-like chemistry capability of Mn2+ ion was also confirmed by catalytic assays. By using the intrinsic H2O2 in cancer cells, MnSO4 NPs provided an elevated cellular reactive oxygen species level, apoptosis induction capability, and antiproliferation efficiency. The designed HME-processed MnSO4 formulation can be efficiently used for the chemodynamic therapy of colorectal cancer.

6.
Small ; 19(35): e2301402, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162448

RESUMO

Cascade hydroxyl radical generating hydrogel reactor structures including a chemotherapeutic agent are invented for multiple treatment of breast cancer. Glucose oxidase (GOx) and cupric sulfate (Cu) are introduced for transforming accumulated glucose (in cancer cells) to hydroxyl radicals for starvation/chemodynamic therapy. Cu may also suppress cancer cell growth via cuproptosis-mediated cell death. Berberine hydrochloride (BER) is engaged as a chemotherapeutic agent in the hydrogel reactor for combining with starvation/chemodynamic/cuproptosis therapeutic modalities. Moreover, Cu is participated as a gel crosslinker by coordinating with catechol groups in hyaluronic acid-dopamine (HD) polymer. Controlling viscoelasticity of hydrogel reactor can extend the retention time following local injection and provide sustained drug release patterns. Low biodegradation rate of designed HD/BER/GOx/Cu hydrogel can reduce dosing frequency in local cancer therapy and avoid invasiveness-related inconveniences. Especially, it is anticipated that HD/BER/GOx/Cu hydrogel system can be applied for reducing size of breast cancer prior to surgery as well as tumor growth suppression in clinical application.


Assuntos
Apoptose , Neoplasias da Mama , Neoplasias , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Hidrogéis , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Neoplasias/terapia , Cobre
7.
Nat Methods ; 20(6): 908-917, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188954

RESUMO

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.


Assuntos
Mitocôndrias , Proteômica , Retículo Endoplasmático , Biotina
8.
FASEB J ; 37(5): e22900, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039823

RESUMO

Ubiquitin-specific protease 4 (USP4) is highly overexpressed in colon cancer and acts as a potent protooncogenic protein by deubiquitinating ß-catenin. However, its prominent roles in tumor formation and migration in cancer cells are not fully understood by its deubiquitinating enzyme (DUB) activity on ß-catenin. Thus, we investigated an additional role of USP4 in cancer. In this study, we identified cortactin (CTTN), an actin-binding protein involved in the regulation of cytoskeleton dynamics and a potential prognostic marker for cancers, as a new cellular interacting partner of USP4 from proximal labeling of HCT116 cells. Additionally, the role of USP4 in CTTN activation and promotion of cell dynamics and migration was investigated in HCT116 cells. We confirmed that interacting of USP4 with CTTN increased cell movement. This finding was supported by the fact that USP4 overexpression in HCT116 cells with reduced expression of CTTN was insufficient to promote cell migration. Additionally, we observed that USP4 overexpression led to a significant increase in CTTN phosphorylation, which is a requisite mechanism for cell migration, by regulating Src/focal adhesion kinase (FAK) binding to CTTN and its activation. Our results suggest that USP4 plays a dual role in cancer progression, including stabilization of ß-catenin as a DUB and interaction with CTTN to promote cell dynamics by inducing CTTN phosphorylation. Therefore, this study demonstrates that USP4 is important for cancer progression and is a good target for treating or preventing cancer.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , Células HCT116 , beta Catenina/metabolismo , Cortactina/metabolismo , Movimento Celular/fisiologia , Proteases Específicas de Ubiquitina/metabolismo
9.
Child Abuse Negl ; 140: 106193, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060691

RESUMO

BACKGROUND: We conducted this study after South Korea abolished parental disciplinary rights in 2021. OBJECTIVE: This study identifies the characteristics of parental perceptions regarding types of corporal punishment administered to children by discovering the in-depth subjective structure of perceptions. PARTICIPANTS: We recruited 40 participants (parents with children aged two to six years) after posting a notice on the bulletin boards of infant nursing and education institutions in Seoul. METHODS: The study employed Q methodology. The research procedure involved 40 Q-samples (selected from the Q-concourse) classified according to P-samples of 40 participants. We used the QUANL program to analyze data. RESULTS: We categorized parents' perceptions into four types: removal (corporal punishment is wrong and should not be used), discipline (corporal punishment is a disciplinary method), trigger (certain triggers induce corporal punishment), and habit (corporal punishment occurs habitually). While all parents in the four types perceived corporal punishment as an action to avoid, stopping it in childcare settings was difficult. Some parents viewed it as necessary and revealed the importance of setting standards. Results showed that support measures (such as parental education and legal measures) are required to correct misconceptions and inaccurate knowledge about corporal punishment and create a quality, nurturing environment for children. CONCLUSIONS: The findings provide meaningful data supporting measures to reduce parental corporal punishment that inhibits growth in early childhood.


Assuntos
Pais , Punição , Criança , Humanos , Pré-Escolar , Escolaridade , Instituições Acadêmicas , República da Coreia
10.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945504

RESUMO

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.

11.
Clin Cosmet Investig Dermatol ; 15: 2465-2475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411843

RESUMO

Background: Human fibroblast-derived multi-peptide factors (MPFs) promote wound repair by playing crucial roles in cell recruitment, adhesion, attachment, migration, and proliferation. Methods: Cultured human dermal fibroblasts (HDFs) were directly treated with non-contact low- and high-energy nitrogen plasma and further cultured in various conditioned media. Cell proliferation and wound-healing properties were evaluated. Results: In Opti-modified Eagle's medium + GlutaMAX culture, reduced HDF viability was observed 24 h after 2-J/pulse plasma treatment and 12 and 24 h after 3-J/pulse treatment. Meanwhile, in dermal fibroblast-conditioned medium (DFCM) containing MPF culture, reduced HDF viability was observed only 24 h after 3-J/pulse treatment. Under DFCM-MPF culture, the wound area percentage was significantly decreased after 12 and 24 h in untreated HDFs; at 9, 12, and 24 h after 1-J/pulse plasma treatment; at 3, 6, 9, 12, and 24 h after 2-J/pulse plasma treatment; and at 9, 12, and 24 h after 3-J/pulse plasma treatment. Greater migration of HDFs with or without plasma treatment was found in DFCM-MPFs than in other conditioned media. Conclusion: Low-energy nitrogen plasma treatment promotes HDF proliferation and wound repair. DFCM-MPFs enhanced cell proliferation and improved the wound healing properties of HDFs treated with low- and high-energy plasma.

12.
Int J Biol Macromol ; 223(Pt A): 77-86, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36336157

RESUMO

Efficient delivery of a photosensitizer (PS) and oxygen to tumor tissue is critical for successful photodynamic therapy (PDT). For this purpose, we developed a fucoidan (Fu)-chlorin e6 (Ce6) nanoparticle (NP) containing perfluorooctylbromide (PFOB). Fu, a biopolymer derived from seaweed, made up the hydrophilic shell of the NP and provided specific targeting to tumor cells by P-selectin binding. Conjugation with the hydrophobic Ce6 enabled self-assembly and Ce6-generated cytotoxic reactive oxygen species to kill tumor cells upon laser irradiation. PF supplied oxygen to the hypoxic tumor tissue and increased the efficacy of the PDT. The developed Fu-Ce6-PF-NPs bound specifically to SCC7 tumor cells and killed them via a photodynamic effect on laser irradiation. High accumulation of the NPs in tumor tissue and improved tumor suppression by PDT were observed in SCC7 tumor-bearing mice. The overall data demonstrated the potential of Fu-Ce6-PF-NP as a tumor-targeting drug carrier for effective PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Linhagem Celular Tumoral , Porfirinas/química , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Oxigênio
13.
Artigo em Inglês | MEDLINE | ID: mdl-36231809

RESUMO

This study applied the Q methodology to explore breast cancer patients' perceived difficulties in their fight against the disease. We used literature analysis and in-depth interviews and selected 162 statements for the Q population. Then, we chose 40 universal and representative statements for the Q samples from the Q population. The P sample included 13 breast cancer patients in the early stage of the disease who participated in the Q sorting. We interviewed the study participants with high factor weights by type of P sample. The study's results showed three types of breast cancer patients' perceptions of difficulties in the initial fight against the disease. Type 1 showed 'fear of the future', Type 2 showed 'helplessness against what cannot be controlled', and Type 3 showed 'frustration due to difficulties in role performance.' Based on these results, we discuss the characteristics, meanings, and significance of individual types of breast cancer patients' perceptions of the disease, including suggestions for follow-up studies.


Assuntos
Neoplasias da Mama , Q-Sort , Povo Asiático , Medo , Feminino , Humanos , República da Coreia
14.
J Control Release ; 349: 617-633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868357

RESUMO

A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (•OH) generation, and photothermal ablation in cancer therapy. Glucose oxidase (GOx) was entrapped in the pH-modulated Fc-HP (Fc-HP°)/HD hydrogel network for converting intracellular glucose to H2O2 to enable its own supply. The GOx/Fc combination-installed hydrogel reactor system can provide sustained ST/CDT/PTT functions along with ferroptosis. Injection of Fc-HP°/HD/GOx hydrogel with single-syringe injectability, shear-thinning feature, and self-healing capability offered a slow biodegradation rate and high safety profiles. Peritumorally injected Fc-HP°/HD/GOx hydrogel also efficiently suppressed the growth of breast cancer based on multifunctional therapeutic approaches with reduced dosing frequency. Hyperthermia induced by near-infrared (NIR) laser absorption may amplify the therapeutic effects of free radicals. It is expected that this Fc-HP°/HD/GOx hydrogel system can be applied to local cancer therapy with high efficacy and safety profiles.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias , Ácidos Borônicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Dopamina/uso terapêutico , Ésteres/uso terapêutico , Feminino , Compostos Ferrosos , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/uso terapêutico , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/uso terapêutico , Metalocenos/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-35805239

RESUMO

The purpose of this study was to categorize subjective perceptions of smartphone app use among mothers with young children, derive characteristics of each perception type, and interpret the findings to determine appropriate smartphone use for each perception type. We applied the Q methodology to classify and analyze the types of perceptions of mothers with young children. Ultimately, we selected 40 Q samples by comprehensively analyzing in-depth interviews with mothers of young children and conducting reviews of literature related to smartphone app use. The P samples in the study consisted of 31 mothers. We performed data analysis using the QUANL program. The analysis identified four types of smartphone users: (1) "multi-adapters" who actively utilize functions, (2) "chaos dilemma" users who understand the disadvantages of smartphones but cannot refrain from using smartphone apps, (3) "time-killer dependent" users who utilize apps to relieve temporary stress and anxiety, and (4) "self-development focused users" who pursue positive changes. Based on these findings, we suggest ways in which mothers of young children can utilize smartphone apps in a developmental and appropriate manner.


Assuntos
Aplicativos Móveis , Criança , Pré-Escolar , Feminino , Humanos , Mães , Smartphone
16.
Sci Rep ; 12(1): 10086, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710563

RESUMO

The measured response of cell population is often delayed relative to drug injection, and individuals in a population have a specific age distribution. Common approaches for describing the delay are to apply transit compartment models (TCMs). This model reflects that all damaged cells caused by drugs suffer transition processes, resulting in death. In this study, we present an extended TCM using Coxian distribution, one of the phase-type distributions. The cell population attacked by a drug is described via age-structured models. The mortality rate of the damaged cells is expressed by a convolution of drug rate and age density. Then applying to Erlang and Coxian distribution, we derive Erlang TCM, representing the existing model, and Coxian TCMs, reflecting sudden death at all ages. From published data of drug and tumor, delays are compared after parameter estimations in both models. We investigate the dynamical changes according to the number of the compartments. Model robustness and equilibrium analysis are also performed for model validation. Coxian TCM is an extended model considering a realistic case and captures more diverse delays.


Assuntos
Neoplasias , Humanos , Modelos Biológicos
17.
Elife ; 112022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551737

RESUMO

Inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate (IP) metabolism, is a pleiotropic signaling factor involved in major biological events, including transcriptional control. In the yeast, IPMK and its IP products promote the activity of the chromatin remodeling complex SWI/SNF, which plays a critical role in gene expression by regulating chromatin accessibility. However, the direct link between IPMK and chromatin remodelers remains unclear, raising the question of how IPMK contributes to transcriptional regulation in mammals. By employing unbiased screening approaches and in vivo/in vitro immunoprecipitation, here we demonstrate that mammalian IPMK physically interacts with the SWI/SNF complex by directly binding to SMARCB1, BRG1, and SMARCC1. Furthermore, we identified the specific domains required for IPMK-SMARCB1 binding. Notably, using CUT&RUN and ATAC-seq assays, we discovered that IPMK co-localizes with BRG1 and regulates BRG1 localization as well as BRG1-mediated chromatin accessibility in a genome-wide manner in mouse embryonic stem cells. Together, these findings show that IPMK regulates the promoter targeting of the SWI/SNF complex, thereby contributing to SWI/SNF-meditated chromatin accessibility, transcription, and differentiation in mouse embryonic stem cells.


Assuntos
Proteínas Cromossômicas não Histona , DNA Helicases , Animais , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)
18.
Cancer Discov ; 12(4): 984-1001, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933901

RESUMO

Chemotherapy is ubiquitous in first-line treatment of advanced gastric cancer, yet responses are heterogeneous, and little is known about mediators of chemotherapy response. To move forward, an understanding of the effects of standard chemotherapy on the tumor-immune microenvironment (TME) is needed. Coupling whole-exome sequencing, bulk RNA and single-cell transcriptomics from paired pretreatment and on-treatment samples in treatment-naïve patients with HER2-positive and HER2-negative gastric cancer, we define features associated with response to platinum-based chemotherapy. Response was associated with on-treatment TME remodeling including natural killer (NK) cell recruitment, decreased tumor-associated macrophages, M1-macrophage repolarization, and increased effector T-cell infiltration. Among chemotherapy nonresponders, we observed low/absent PD-L1 expression or modulation, on-treatment increases in Wnt signaling, B-cell infiltration, and LAG3-expressing T cells coupled to an exodus of dendritic cells. We did not observe significant genomic changes in early on-treatment sampling. We provide a map of on-treatment TME modulation with standard chemotherapy and nominate candidate future approaches. SIGNIFICANCE: Using paired pretreatment and on-treatment samples during standard first-line chemotherapy, we identify chemotherapy-induced NK-cell infiltration, macrophage repolarization, and increased antigen presentation among responders. Increased LAG3 expression and decreased dendritic cell abundance were seen in nonresponders, emphasizing remodeling of the TME during chemotherapy response and resistance. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Neoplasias Gástricas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Genômica , Humanos , Platina/farmacologia , Platina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Microambiente Tumoral
19.
Cancer Med ; 10(20): 7253-7262, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34542244

RESUMO

BACKGROUND: Diffuse-type gastric cancer (GC) is known to be more aggressive and relatively resistant to conventional chemotherapy. Hence, more optimized treatment strategy is urgently needed in diffuse-type GC. METHODS: Using a panel of 10 GC cell lines and 3 GC patient-derived cells (PDCs), we identified cell lines with high EMTness which is a distinct feature for diffuse-type GC. We treated GC cells with high EMTness with ramucirumab alone, TGF-ß receptor kinase inhibitor (TEW-7197) alone, or in combination to investigate the drug's effects on invasiveness, spheroid formation, EMT marker expression, and tumor-induced angiogenesis using a spheroid-on-a-chip model. RESULTS: Both TEW-7197 and ramucirumab treatments profoundly decreased invasiveness of EMT-high cell lines and PDCs. With a 3D tumor spheroid-on-a-chip, we identified versatile influence of co-treatment on cancer cell-induced blood vessel formation as well as on EMT progression in tumor spheroids. The 3D tumor spheroid-on-a-chip demonstrated that TEW-7197 + ramucirumab combination significantly decreased PDC-induced vessel formation. CONCLUSIONS: In this study, we showed TEW-7197 and ramucirumab considerably decreased invasiveness, thus EMTness in a panel of diffuse-type GC cell lines including GC PDCs. Taken together, we confirmed that combination of TEW-7197 and ramucirumab reduced tumor spheroid and GC PDC-induced blood vessel formation concomitantly in the spheroid-on-a-chip model.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Humanos , Ramucirumab
20.
Int J Pharm ; 607: 120988, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34389420

RESUMO

CO2 gas generating poly(lactic-co-glycolic acid) (PLGA) microsphere (MS) was designed for rapid release of tanespimycin (17-AAG) in transarterial chemoembolization (TACE) treatment of hepatocellular carcinoma (HCC). As poorly water-soluble drug is generally released from PLGA MS in a sustained manner, the drug release profile should be controlled according to its clinical indications. In current study, responding to immediate increase in hypoxia inducible factor-1α (HIF-1α) level under hypoxia state followed by embolization of tumor feeding arteries, sodium bicarbonate (NaHCO3) was added to PLGA/17-AAG MS for fast drug release by CO2 gas generation in slightly acidic tumor microenvironment. With the aid of NaHCO3, initial burst release of 17-AAG was available without losing the micron-size and spherical shape of designed MS for embolization of artery. Acid-responsive CO2 gas generation and subsequent immediate release of 17-AAG from MS were successfully verified. PLGA/17-AAG/NaHCO3 MS-treated group exhibited higher antiproliferation and apoptosis induction efficacies in McA-RH7777 and SNU-761 cells. McA-RH7777 tumor-implanted rats treated by TACE using PLGA/17-AAG/NaHCO3 MS presented a complete therapeutic response. All these findings suggest that developed tumor microenvironment-responsive gas-generating MS can be efficiently applied to TACE therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Hipóxia , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Ratos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...